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INTRODUCTION 

This thesis aims to introduce the use of computerized adaptive testing (CAT) – a novel 

and ever increasingly used method of a test administration – applied to the field of 

Kinanthropology. By adapting a test to an individual respondent’s latent trait level, 

computerized adaptive testing offers numerous theoretical and methodological improvements 

that can significantly advance testing procedures. 

Measurement instruments including questionnaires, inventories, test batteries, 

achievement tests, and surveys commonly used in the social and behavioral sciences, have 

traditionally been designed for administration in a linear fixed-length format (Becker & 

Bergstorm, 2013). This conventional measurement approach presents the same set and 

sequence of test items to each test taker, usually in a defined time frame, for instance during 

final exams after completion of a semester of sport physiology. This methodology has 

obvious advantages and disadvantages. One of the advantages is the possibility of 

administering the test to a large group of examinees at the same time (mass-administered 

testing – see DuBois, 1970), which also maximizes uniformity of the testing situation (all test 

takers experience the same context and events surrounding the test administration) and also 

reduces cost when compared to individual testing (Wainer, 2000). Moreover comparison of 

examinees taking the same test is simple and straightforward (Štochl, Bӧhnke, Pickett, & 

Croudace, 2016a; Wainer & Mislevy, 2000) and is for the most part what makes fixed-length 

linear assessments so attractive and popular for practical research activities.  

Although easy and efficient to administer, a linear testing format is often time-

consuming (from an examinee perspective) and thus may place considerable burden on the 

test taker (Štochl et al., 2016a). In order to effectively measure the full breadth of a particular 

latent trait, a measurement instrument has to contain items (i.e., empirical indicators) whose 

level of difficulty covers the entire spectrum of the specified latent trait continuum. For 

example an instrument assessing scholastic achievement must contain some relatively easy 

items earmarked for less proficient examinees, items of moderate difficulty targeting average 

examinees, and items of extreme difficulties for examinees that possess high proficiency 

(Wainer, 2000). The biggest limitation of the traditional group testing using a linear fixed-

length format is its lack of flexibility, since every examinee is routinely tested on all of the 

items included in a test. Canvassing all of the latent trait levels with such a wide range and 

large number of items, linear testing can weaken a test’s reliability by introducing undesirable 

incidental variables (e.g., boredom, lack of concentration or frustration), and increase the 

possibility of ‘guessing’ by individuals with lower levels of the latent trait (Wainer, 2000). 



These and related factors undermine the effectiveness of the testing process itself (de Ayala, 

2009). 

Historically speaking, the advent of both World War I and II was instrumental in the 

transition from individual oral testing to mass-administered paper-and-pencil testing. Test 

instruments used in the area of intelligence research before the wars were administered on a 

case-by-case basis and to only one person at a time. Many of the items in these test 

instruments required oral responses from examinees, individual timing or manipulation of 

materials (i.e., building blocks). ). One of the most popular individual tests was the Binet-

Simon Scale (Binet & Simon, 1905) developed to measure a person’s mental level (or mental 

age – see Anastasi, 1976). The original scale consisted of 30 sub-tests or problems ordered 

according to their difficulty. In contrast to a linear fixed-length test, an administration of a 

particular sub-test in the Binet-Simon Scale was based on the examinee’s actual ability. That 

is if an examinee passed a sub-test with a particular known difficulty level, then a sub-test 

with a higher difficulty could be administered subsequently. Conversely, in the event that an 

examinee failed a particular sub-test, also with a known difficulty level, the testing procedure 

could be terminated. Each individual would therefore be tested only over a specific range of 

ability suited to his or her intellectual level. Fairly complicated administration and scoring of 

sub-tests in the Binet-Simon Scale, however, requires a highly trained and experienced 

examiner. Moreover the scoring procedure for an individual intelligence test must be done 

immediately following administration of a particular sub-test, since the process of how the 

testing procedure unfolds is entirely driven by the examinee’s responses to previously 

administered sub-tests. 

As the field of testing and assessment continued to unfold, researchers tried to 

combine several of the advantages associated with both individual and group testing. This 

fostered several innovative approaches and techniques that were proposed in the 1960’s and 

1970’s. Major interest has focused on possibilities of mass-administered test that would be 

tailored to individuals based on their actual performance. In other words, psychometricians 

and test developers tried to provide a basis for mass-administered adaptive testing, in which 

the role of the test administrator would be greatly simplified despite the fact that the testing 

process is individualized according to the examinee’s actual performance in the test in 

question. 

The development of IRT in the middle to later portion of the 20
th

 century has provided 

a sound theoretical background for mass-administered adaptive testing. Relatively slow 

computers at that time, unable to handle matrix algebra and complex computations involved 



in IRT models within a reasonable time, however, hindered researchers from taking advantage 

of the full potential of modern test theory. Early practical applications of group-administered 

adaptive testing were therefore mainly implemented in a traditional paper-and-pencil 

environment without using a specific mathematical model (e.g. Item response theory (IRT) 

model) for the purpose of item selection and latent trait estimation. Examples of such an 

approach include two-stage testing (Cronbach & Gleser, 1965), the flexilevel test (Lord, 

1971) or the pyramidal adaptive testing (Larkin & Weiss, 1975) among others. Figure 12 

illustrates a simple hypothetical example of the two-stage test format.  

It should be noted that every test administration is driven by a specific testing 

algorithm, which defines the testing process in terms of how to begin, how to continue, and 

how to terminate the testing (Thissen & Mislevy, 2000). For instance, in standard linear 

testing formats, all examinees begin by responding to a particular test item and then continue 

until they have responded to all of the items in the test. In the example given in Figure 12, a 

two-stage testing format, all test takers start by responding to 10 designated ‘routing’ items, 

whose difficulties span a wide range of the latent trait being assessed. Based on the test 

taker’s responses to the routing items (whether they perform poorly or do well), each 

examinee is then channeled respectively to receive one of two 20-item sets, each of which 

contains items with different proficiency or difficulty levels (easy vs. difficult). 

 

Figure 12 – Example of two-stage adaptive testing format 

 

By adapting the item difficulties in the second stage according to an examinee’s 

performance in the first stage, the two-stage format shortens the testing procedure from the 

test taker perspective. Using the format presented in Figure 12, each examinee has to respond 

to only 30 items, although the entire test contains 50 items. Figure 13 shows a slightly 



different adaptive testing approach, called a ‘pyramidal’ test. In this case, test items are 

adapted to comport with each examinee’s actual performance, albeit again without using any 

particular mathematical model in the decision tree, nor in the latent trait estimation. 

 

 

Figure 13 – Example of pyramidal adaptive testing format 

 

As Figure 13 depicts an item with intermediate difficulty is administered to each test 

taker first. In the case of providing a “correct” response, the examinee is channeled to a more 

difficult item in sequence item by item. In the case where the examinee provides an incorrect 

answer, they are channeled to an easier item. This process is repeated until the examinee has 

responded to 8 items. Lord (1971) developed the flexilevel test, which is basically a variation 

to both of the abovementioned formats (two-stage, pyramidal). A detailed description of the 

proposed flexilevel testing algorithm is not essential for the present discussion. The important 

thing is that in the flexilevel format, like the other two formats, each examinee responds to 

only a specific subset of items from the complete test, and as they progress through the testing 

format the actual responses to the selected items are taken into account.  

Generally, all adaptive testing formats discussed above, as well as other formats that 

do not rely on an explicit mathematical model, also referred to as fixed-branching adaptive 

testing formats (de Ayala, 2009; Patience, 1977), use pre-specified fixed patterns of item 

selection procedure to match the test to the examinee’s level of the latent trait (Reckase, 

1989). Fixed-branching testing formats, however, are suboptimal with regard to both the item 

selection and trait estimation. Variable-branching adaptive testing formats, on the other hand, 



typically use an IRT model as a theoretical and mathematical base to address the issues of 

item selection and trait estimation in a more methodologically rigorous way. Unique features 

of IRT-based variable-branching adaptive testing eliminate some of the problems inherent in 

fixed-branching adaptive techniques. For example, difficulties of the test items are expressed 

in the same metric as the latent trait estimates in IRT-based adaptive testing, allowing for a 

more precise and flexible definition of item selection than fixed-branching algorithms. 

Moreover, in addition to the difficulties, the item selection process in IRT-based variable-

branching testing can take into account other very useful item characteristics (discrimination, 

guessing parameter). Unlike the fixed-branching adaptive procedures, the IRT-based variable-

branching techniques provide a means for the researcher/examiner to control the precision of 

the trait estimates. Thus, instead of specifying a number of items to be administered just as in 

fixed-branching procedures, one can specify a required level of measurement precision as a 

test termination criterion within IRT-based variable-branching testing. In other words, an 

IRT-based testing process using variable-branching approach can be terminated as soon as a 

particular degree of reliability is obtained (de Ayala, 2009; Urry, 1977). This approach 

provides a means to achieve genuine equiprecise measurement where error of measurement is 

distributed uniformly along the latent continuum. 

Because of the extensive computations involved in the process of item selection and 

trait estimation, variable-branching adaptive testing has been (almost) exclusively 

implemented on computers. The first practical applications of variable-branching adaptive 

formats based on the modern test theory were therefore delayed until inexpensive but 

powerful computers became available to the research community. The fast processing speed 

(and ability to handle complex matrix algebra algorithms) provided a means for immediate, 

real-time item selection and trait estimation leading the way to full implementation of IRT-

based computerized adaptive testing with real-world applications (Gershon & Bergstorm, 

2006). One of the first computerized adaptive tests to be developed by the Naval Personnel 

Research and Development Center in the mid 1980’s, was the Armed Services Vocational 

Aptitude Battery (Wainer, 2000). This pioneering effort was shortly afterwards followed by 

the implementation of a CAT version of 1) the National Council of State Boards of Nursing 

licensing exam and 2) the Graduate Record Examination (van der Linden & Glas, 2010). Use 

of the CAT has increased substantially since that time, not only in education (Weiss & 

Kingsbury, 1984) and psychology (Waller & Reise, 1989), but more recently in the field of 

health-related outcomes (Fayers, 2007). In contrast to other behavioral and social sciences, 



application of CAT in Kinanthropology has been minimal with only a few published 

exceptions (Zhu, 1992; Zhu, Safrit, & Cohen, 1999). 

 

AIMS AND HYPOTHESES 

The current thesis introduces the use of CAT applied to the field of Kinanthropology. 

The overall utility of CAT is demonstrated empirically via a controlled simulation study 

demonstrating how CAT shortens administration of a self-report fixed-length questionnaire 

routinely used to assess physical self-concept. Related to this first aim, the present study also 

evaluates the efficiency of different parameter estimation and item selection methods 

commonly encountered with CAT. This latter refinement offers the potential to assess the 

influence of varying distributional properties and test administration features on measurement 

efficiency and precision using CAT methodology. 

Specifically, in the empirical part of the thesis, I present findings from CAT 

simulation of the Physical self description questionnaire (PSDQ). The simulation study 

described in the subsequent chapters, aimed to compare a) the number of administered items 

from PSDQ (test length) and b) accuracy of estimated latent levels of physical self-concept, 

while using a variety of latent trait estimation methods, items selection algorithms, stopping 

rules, and distributional properties. The specific study hypotheses include: 

 

a) Kullback-Leibler divergence-based and Fisher information-based item selection 

methods will both produce similar number of administered items from the PSDQ, 

b) the expected a posteriori trait estimation method will lead to a smaller number of 

administered items than the maximum likelihood latent trait estimation method, 

c) using the uniform true latent trait distribution will lead to higher number of 

administered items from the PSDQ than using the standard normal true latent trait 

distribution, and 

d) bias of the estimated latent levels of physical self-concept will be similar across 

the latent trait estimation methods (expected a posteriori vs. maximum likelihood 

estimation method) as well as across the item selection methods (Kullback-Leibler 

vs. Fisher information selection method) used in the simulation study. 

 

METHODS 

The current thesis uses a Monte Carlo simulation to evaluate the efficiency and 

accuracy of a CAT administration using the PSDQ. A real item bank calibrated with an IRT 



model was used and responses to test items during the adaptive administration were generated 

based on known item parameters and latent trait values (θ). The latent trait values (θ) were in 

this case simulated from a desired distribution and served as true values of physical-self 

description latent construct for ‘hypothetical’ examinees (simulees). Then the process of 

adaptive testing – that is in simplified form: selecting “the best” item for the most current θ 

estimate, revising the θ estimate based on the response to the selected item, and checking 

whether a criterion for the test termination is satisfied – was simulated using several different 

CAT algorithm specifications. The next section outlines the integral CAT components 

(calibrated item bank and testing algorithms) as well as the CAT simulation procedures. 

 

Item pool, IRT model used for item calibration, dimensionality analysis 

General description of the item pool 

The 70-item PSDQ provided the item pool for the current simulation study. The PSDQ 

was designed to measure adolescents’ (12 years and older) physical self-concept (see 

Shavelson, Hubner, & Stanton, 1976, for theoretical background, scale construction, and 

preliminary psychometric evidence). Each PSDQ item employs a six-point Likert-type scale 

(i.e., false, mostly false, more false than true, more true than false, mostly true, and true); with 

items scaled in the direction of higher physical self-concept. The PSDQ is comprised of 11 

subscales (i.e., health, coordination, physical activity, body fat, sport competence, physical 

self, appearance, strength, flexibility, endurance/fitness, and self-esteem), all of which have 

been shown to have acceptable reliabilities (Cronbach’s  ranged from 0.81 to 0.94, see 

Flatcher & Hattie, 2004; Marsh et al., 1994). Construct validation studies using the PSDQ 

provide evidence of a higher-order factor structure, with 11 first-order dimensions and one 

second-order dimension reflecting physical self-concept (Marsh, 1996a, 1996b; Marsh & 

Redmayne, 1994; Marsh, Richards, Johnson, Roche, & Tremayne, 1994). 

 

Item calibration 

Flatcher and Hattie (2004) provided empirical estimates for item parameters needed 

for an IRT-based CAT simulation. Their study involved an Australian sample of high school 

students (N = 868, ages 13 to 17 years) engaged in sports activities. A Grade response model 

(GRM) was used to estimate each item’s discrimination and threshold parameters. 

 

 

 



Dimensionality analysis 

A reasonable prerequisite of estimating the IRT parameters by a GRM requires that 

only one general latent factor (dimension) accounts for the association between all 70 test 

items. In order to test this unidimensional assumption, Flatcher and Hattie (2004) factor 

analyzed composite subscale scores for each of the 11 PSDQ sub-domains using exploratory 

factor analysis (EFA). The results of the EFA supported the existence of one general latent 

factor of physical self-concept that accounted for 47% of the total item variance. A 

confirmatory factor analysis (CFA) applied to the same 11 PSDQ subscale scores also showed 

that a single factor solution produced an adequate model fit (RMSEA = 0.032, see Flatcher & 

Hattie, 2004); lending further support to a unidimensional factor structure for the PSDQ. 

 

CAT simulation design and specifications 

A Monte Carlo simulation was conducted to evaluate the performance of a CAT 

administration of the PDSQ described above. This type of CAT simulation requires both the 

latent trait values in addition to the item parameter estimates from the calibration study at 

hand. Moreover, specific details of the CAT algorithmic component need to be defined. The 

whole process can be outlined as follows (see also Štochl et al., 2016b): 

 

Step 1. Simulate latent trait values (true θ) 

Two samples of 1000 latent trait values (θ) randomly drawn from a) the standard 

normal distribution N(0,1) and b) the uniform distribution U(-3,3) were obtained. The 

simulated latent trait values represent the true values of the latent physical self-concept (θ
*
) in 

a sample of ‘hypothetical’ examinees.  

 

Step 2. Supply item parameters for the intended item pool 

Discrimination and threshold parameter estimates from the calibration study need to 

be provided for the 70 items in the PDSQ. The item parameters together with θ
*
’s simulated 

in previous step are used to obtain stochastic responses to the selected items during the 

simulated CAT administration of the PSDQ. 

 

Step 3. Set CAT algorithm options 

In this step, the algorithmic component of CAT needs to be specified – that is the 

decision rule indicating how to start (selection of the first item, initial θ estimation method, 

number of items for a starting phase of the testing), continue (item selection method, θ 



estimation method), and how/when to stop (termination criterion) the testing process need to 

be specified. Even though Monte Carlo studies offer a great opportunity to compare different 

CAT methods and specifications, the manipulated options should be carefully selected to 

prevent a rapid increase of the simulated conditions (Štochl et al., 2016a). In the current 

simulation, the following settings and methods were used: 

 

Latent trait (θ) estimation methods 

The latent trait was estimated using one of the following methods: a) 

maximum likelihood estimation (MLE), b) expected a priori (EAP) with 

uniform prior distribution, and c) EAP with standard normal prior 

distribution. The MLE and EAP were chosen because the aim was to 

compare the traditional likelihood-based latent trait estimation method 

with a Bayesian method, the latter which combines the likelihood with 

prior distribution. To evaluate the effect of the prior distribution on the 

efficacy of CAT (i.e. number of administered items and accuracy of the 

latent trait estimates) an informative (standard normal) and an non-

informative (uniform) prior within the EAP estimation were selected. 

 

Item selection methods 

Two item selection methods were adopted in the current simulation: a) 

unweighted Fischer information (UW-FI) method, and b) fixed-point 

Kullback-Leibler (FP-KL) divergence-based method. The 𝛿 value within 

the FP-KL selection procedure was set to 0.1. Both methods select items at 

a particular (most current) point estimate of the latent trait. At each step of 

the CAT only the single best item according to a given criterion was 

considered for the administration. With regard to item selection, UW-FI 

and FP-KL were selected in order to compare traditional item selection 

approach (based on Fisher information) with the more recently proposed 

procedure (based on Kullback-Leibler divergence). 

 

Stopping rules 

The termination criterion based on the measurement precision cutoff was 

used in the current CAT simulation since this approach offers the 

opportunity of creating equiprecise measurement (Weiss, 1982). 



Equiprecise measurement refers to a situation where the test information is 

uniformly distributed and thus the reliability of the latent trait estimates is 

the same for all test takers. In such a case a global measure of reliability 

which is used within CTT (reliability is a constant within CTT) becomes 

justified. Number of administered items can vary for each examinee to 

reach equiprecise measurement within a CAT approach. 

In CTT (in the case of standardized values with mean of 0 and SD = 1), the 

relation between standard error (SE) and reliability can be formalized as 

𝑆𝐸 =  √1 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦. The selected cutoff values of SEs which 

represent latent trait estimate reliabilities of a) ≈ 0.95, b) ≈ 0.90, c) ≈ 0.85 

and d) ≈ 0.80, are therefore equal to a) 0.23, b) 0.32, c) 0.39 and d) 0.45 

respectively. Thus the simulated CAT administration continued until the 

standard error of the 𝜃 estimate dropped below the selected cutoff value or 

until all 70 items from the PSDQ were administered. 

 

Overall conditions in CAT simulations 

The specifications described above produced a 2 (simulated θ
*
 

distribution: standard normal distribution, uniform distribution) × 3 (latent 

trait estimation methods: MLE, EAP with standard normal prior, EAP with 

uniform prior) × 2 (item selection methods: UW-FI, FP-KL) × 4 (stopping 

rules: SE = 0.23, SE = 0.32, SE = 0.39, SE = 0.45) matrix with 48 overall 

simulation conditions. Within all of the conditions the initial 𝜃 value was 

kept constant for all hypothetical examinees, the step-size estimation 

procedure was used for the first two items, and at least 3 items had to be 

administered before the test was terminated. 

 

Step 4. Simulate CAT administration 

Within all of the 48 CAT simulation design conditions, an adaptive administration of 

the PDSQ was simulated for every single randomly generated true latent trait (θ
*
) value (from 

Step 1). Within the starting phase of each CAT simulated administration, the initial 𝜃 level 

was set to 0 logits (the mean of the distributions) and thus the same item was always 

administered first. Using the parameters of the selected item and the particular true θ
*
 value, 

the stochastic response is obtained and the initial θ value is updated based on the response. To 



obtain a stochastic response, a uniform random number uij from U(0,1) is generated for each 

item/simulated θ
*
 combination and compared to the model-generated probabilities of 

responding to a given item category to create a scored response. For instance, in a GRM with 

a three-category response format for a single item, if Pi1(θj) = 0.7 and Pi2(θj) = 0.2 then Pi3(θj) 

= 0.1. If the generated random number uij < Pi1(θj) then the scored response for the particular 

simulated true θ
*
j is the first response category; if Pi1(θj) < uij < [1 – Pi3(θj)] then the scored 

response fits the second response category and if uij > [1 – Pi3(θj)] then the response fits the 

third response category for a particular item. 

A step-size procedure was used to “estimate” the latent trait for the first two 

administered items. Specifically, if a simulated response was in the selected item’s first or in 

the selected item’s last response category, the 𝜃 value was decreased by 1 logit or increased 

by 1 logit respectively, otherwise it was held constant.  

For the updated θ estimate after two administered items, the next item is selected from 

the item pool and a stochastic response is obtained again. Given the response, the new θ 

estimate is calculated, now using one of the latent trait estimation methods listed in step 3, 

and another item is selected for the updated latent trait estimate. This process is repeated until 

a specified stopping rule was.  

 

Analysis of simulation results 

All simulations were performed in the R (R Core Team, 2013) statistical software 

using the catIrt package (Nydick, 2014). The performance of the CATs was evaluated with 

respect to: a) the number of administered items and b) proximity of CAT-estimated latent trait 

values (𝜃) to the true simulated latent trait values (𝜃∗) as well as to latent trait estimates based 

on the full PSDQ (𝜃𝑃𝑆𝐷𝑄). To assess such measurement accuracy, the following indices were 

used: 

 

- Individual latent trait bias 

𝐵𝑖𝑎𝑠(𝜃𝑗) = 𝜃𝑗 − 𝜃𝑗
∗      

 

- Mean absolute bias 

𝐵𝑖𝑎𝑠(𝜃) =
1

𝑁
∑|𝜃𝑗 − 𝜃𝑗

∗|

𝑁

𝑗=1

. 

 



In addition, Pearson’s correlation coefficient was computed to evaluate the relationship 

between 𝜃 and 𝜃∗ and between 𝜃 and 𝜃𝑃𝑆𝐷𝑄 for each of the CAT simulation conditions. 

A 2 (simulated 𝜃∗ distribution) × 3 (latent trait estimation methods) × 2 (item selection 

methods) × 4 (stopping rules) way ANOVA was used to assess the effect of various 

simulation conditions on both the test length and absolute bias of the CAT latent trait 

estimates. Consistent with other related IRT-based CAT studies (Guyer & Weiss, 2009; 

Nydick, 2013; Nydick & Weiss, 2009; Wang & Wang, 2001, 2002), and given the design of 

the current study (resulting in N = 48000 observations and thus providing extremely high 

statistical power), ANOVA was used descriptively to indicate the amount of variance 

accounted for by each factor in the Monte Carlo simulation. Each ANOVA model specified 

both main and two-way interaction effects with the eta-squared η
2
 statistic used to express 

effect sizes. The effect size η
2
 was interpreted according to Cohen’s (1988) recommendations: 

no effect if η
2
 < 0.01, small effect if 0.01 < η

2
 < 0.06, medium effect if 0.06 < η

2
 < 0.14, and 

large effect if η
2
 > 0.14. 

 

RESULTS 

Number of administered items in CAT simulation 

Figure 17 shows the average number of administered PSDQ items for different CAT 

estimation methods, items selection procedures, termination criteria, and generated true latent 

trait (𝜃∗) distributions. On average between 22 and 34 items were administered regardless of 

𝜃∗ distribution, item selection and latent trait estimation methods, when high measurement 

precision was required (termination criterion SE = 0.23, which corresponds to reliability of 

0.95). The average number of administered items decreased rapidly (between 14 and 18 

items) when the CAT stopping rule was set to SE = 0.32 (reliability of 0.90). A further 

reduction in desired level of measurement precision conforming to a SE of 0.39 and 0.45 

(reliability of 0.85 and 0.80, respectively), showed that the number of items administered to 

meet this benchmark was far less; however, the change was not as steep as with a smaller SE 

and higher precision level (see Figure 17). Interestingly, when a relatively low, but widely 

accepted level of measurement precision was specified (stopping rule of SE = 0.45), only 4 to 

10 items from the 70-item PSDQ were administered on average. 

Results displayed on Figure 17 indicate that the latent trait estimation methods were 

similarly effective while the two item selection methods were virtually identical across 

simulation conditions. For each combination of the latent trait estimator and the stopping rule, 

standard normal distribution of the generated 𝜃∗ led to lower number of administrated items.  



 

 

Figure 17 – Mean number of administered items from PSDQ in CAT simulations by level of 

measurement precision. Note: error bars represent standard error of the mean; shifts on x-axis 

within a particular SE are artificial to make all means visible. 

 

Table 4 shows the analysis of variance (ANOVA) results to examine the effect of 

different simulation conditions on test length. As depicted, most of the variability in the 

number of administered items across the simulation conditions was accounted for by desired 

level of measurement precision and the 𝜃∗ distribution. Specifically, 30.2% of the test length 

total variability in the current simulation is due to stopping rule (η
2
 = 0.302, p < 0.001). 

Therefore, specifying different values of the standard error (SE) stopping rule will have a 

large effect on the efficacy of the PSDQ CAT administration. In case of the 𝜃∗ distribution, 

which accounted for most of the remaining variance (5.1%), the effect size was relatively 

small (η
2
 = 0.051, p < 0.001). 

Turning to the remaining ANOVA main effects, the different estimation methods 

accounted for a significant portion of model variance (p < 0.001); however the overall effect 

this had on the number of administered items was almost negligible (η
2
 = 0.010). The only 

nonsignificant main effect was associated with item selection methods (p = 0.554). The effect 

size of the item selection methods on the test length (η
2
 < 0.001) is trivially small based on 

Cohen’s (1988) guidelines. Although two out of six ANOVA interaction effects were 

statistically significant at the conventional α = 0.05 level, both produced relatively small 

effect sizes (η
2
 < 0.01), indicating no effect of these model terms on the test length.  

 



 

Table 4 – ANOVA results for number of administered items in CAT simulation (n = 48000) 

Source df F p η
2
 

Main Effects 

      Latent trait estimation method 2 246.0 0.000 0.010 

  θ
*
 distribution 1 2552.5 0.000 0.051 

  Stopping rule SE 3 6923.8 0.000 0.302 

  Item selection method 1 0.4 0.554 0.000 

2-way Interaction Effects 

      Latent trait estimation method * Item selection method 2 0.0 0.981 0.000 

  Latent trait estimation method * Stopping rule SE 6 1.9 0.078 0.000 

  Latent trait estimation method * θ
*
 distribution 2 40.7 0.000 0.002 

  Stopping rule SE * Item selection method 3 0.2 0.915 0.000 

  θ
*
 distribution * Item selection method 1 0.1 0.710 0.000 

  θ
*
 distribution * Stopping rule SE 3 148.8 0.000 0.009 

Error 47975 

   Note: df – degrees of freedom, F – F-statistics, p – p-value, η
2
 – effect size 

 

It is worth noting that the efficacy of the PSDQ CAT administration, in terms of test 

length, varied greatly as a function of the CAT estimated latent trait (𝜃) values. This is further 

demonstrated in Figure 18 and Figure 19 for the standard normal true latent trait (θ
* 

~ N(0,1)) 

and the uniform true latent trait (θ
*
 ~ U(-3,3)) distributions, respectively. Given the 

nonsignificant finding and likewise the negligible effect size observed in the ANOVA model 

for the item selection methods on test length, only different latent trait estimators and standard 

error stopping rules are compared in Figures 18 and 19. 

As both Figures 18 and 19 reveal, generally more items were administered when 

estimating higher latent levels of physical self-concept (e.g., 𝜃 > 1.5 logits) for each stopping 

rule criterion. For instance, when high measurement precision was desired (SE stopping rule 

was set to SE = 0.23) approximately 15 to 35 items (saving at least half of the item pool) on 

average were administered where the range for 𝜃 was between -3 to 1 logits. In contrast, 63 to 

70 items were needed when latent trait levels were much higher (𝜃 ≥ 2 logits), regardless of 

the θ
*
 distribution and latent trait estimator (see the upper left portion of the Figures). 

 



 

Figure 18 – Mean number of administered items from PSDQ (Y axis) as a function of CAT 

latent trait estimates (𝜃; X axis) for standard normal true latent trait (𝜃∗~ N(0,1)) distribution. 

Note: EAPn = EAP estimation with standard normal prior; EAPu = EAP estimation with 

uniform prior; error bars represent standard deviation 

 

The observation is a result of the distribution of the PSDQ items threshold and 

discrimination parameters and is therefore related to the item pool information function (see 

Appendix). The PSDQ items threshold parameters are mostly located on the negative side of 

the physical self-concept latent continuum, providing less information for high latent trait 

values, which produces the demand for more items in the test administration. 

Even for situations requiring much lower measurement precision (stopping rule SE = 

0.45), a relatively high number of items was administered on average for the latent trait 

estimates about 𝜃 = 3 logits. This was especially true for MLE and EAP with uniform prior 

estimators, where 40 to 55 items were needed regardless the θ
*
 distribution (see the lower 

right parts of the Figure 18 and 19). 

 



 

Figure 19 – Mean number of administered items from PSDQ (Y axis) as a function of CAT 

latent trait estimates (𝜃; X axis) for uniform true latent trait (𝜃∗~ U(-3,3)) distribution. Note: 

EAPn = EAP estimation with standard normal prior distribution; EAPu = EAP estimation 

with uniform prior distribution; error bars represent standard deviation 

 

Interestingly, at the same precision level (SE = 0.45), the EAP latent trait estimator 

with standard normal prior distribution required only about 15 items even for 𝜃 = 3 logits. 

Generally, the performance of the MLE and EAP with uniform prior was very similar at each 

latent trait value across all termination criteria as well as across both θ
*
 distributions. The 

different efficacy of the EAP with standard normal prior at the higher extremes of the physical 

self-concept latent continuum starts to be apparent as soon as the stopping rule SE equals to 

0.32 (equivalent to reliability of 0.90) and increases with decreasing level of the required 

measurement precision. These results indicate that the PSDQ CAT administration may not 

necessarily bring the expected benefits (reducing testing time and respondent burden) when 

measuring students with high trait values of physical self-concept. The efficacy of the PSDQ 

CAT administration for the higher latent trait values (e.g., 𝜃 ≥ 1.5 logits) in terms of test 

length may be improved however, by employing EAP estimation with informative prior, 

especially if the standard error of the latent trait estimate SE ≥ 0.39 is acceptable.  



Bias of the CAT latent trait estimates 

This section explores fundamental issues of concern that revolve around the 

performance of the PSDQ CAT administration with respect to test accuracy. Accuracy is 

evaluated using bias of the CAT latent trait estimates (𝜃) from generated true latent trait 

values (𝜃∗); where smaller absolute values of bias indicate better performance. Figure 20 

graphically presents the average absolute values of individual bias for each simulation 

condition.  

 

 

Figure 20 – Mean of absolute individual bias of CAT latent trait estimates by level of 

measurement precision. Note: error bars represent standard error of the mean; shifts on x-axis 

within a particular SE are artificial to make all means visible. 

 

Not surprisingly, the absolute bias of the CAT latent trait estimates increased as the 

predefined measurement precision decreased, with mean values from 0.18 to 0.21 and from 

0.32 to 0.40 logits for stopping rule SE = 0.23 and SE = 0.45 respectively. It should be noted 

however, that the bias dispersion was higher for the higher SE stopping rule values as well. 

Likewise, when the same analysis was conducted with test length, the Fisher 

information-based and Kullback-Leibler divergence-based item selection methods led to 

almost identical results (see Figure 20). Interestingly, when the MLE or EAP estimator with 

uniform prior distribution was contrasted for the different measurement precision, the findings 

underscored very negligible differences in latent trait bias (refer to the left and right hand part 

of Figure 20). This was not true, however, when the EAP estimator with standard normal 

prior distribution was employed, these results underscoring that the uniformly generated true 



latent trait distribution led to higher values of absolute bias, especially when stopping rule was 

set to SE = 0.39 and 0.45. This finding indicates that specifying an incorrect informative prior 

with EAP estimation seems to be less plausible for obtaining CAT accuracy than specifying 

an uninformative prior or not specifying a prior at all (e.g., using MLE). 

Table 5 summarizes the ANOVA results, evaluating the effect of various simulation 

conditions on absolute values of individual latent trait bias. The ANOVA was run with the 

main and the two-way interaction effects and eta-squared η
2
 was used to determine the effect 

sizes.  

 

Table 5 – ANOVA results for absolute individual bias of CAT latent trait estimates in CAT 

simulation (n = 48000)  

Source df F p η
2
 

Main Effects 
    

  Latent trait estimation method 2 19.91 0.000 0.001 

  θ
*
 distribution 1 121.11 0.000 0.003 

  Stopping rule SE 3 1145.43 0.000 0.067 

  Item selection method 1 0.11 0.742 0.000 

2-way Interaction Effects 
    

  Latent trait estimation method * Item selection method 2 0.37 0.691 0.000 

  Latent trait estimation method * Stopping rule SE 6 7.94 0.000 0.001 

  Latent trait estimation method * θ
*
 distribution 2 22.08 0.000 0.001 

  Stopping rule SE * Item selection method 3 1.01 0.385 0.000 

  θ
*
 distribution * Item selection method 1 0.06 0.813 0.000 

  θ
*
 distribution * Stopping rule SE 3 3.28 0.020 0.000 

Error 47975 
   

Note: df – degrees of freedom, F – F-statistics, p – p-value, η
2
 – effect size 

 

Using α = 0.05 as the acceptable limit for statistical hypotheses testing, three main effect 

terms and three interactions significantly influenced the absolute individual bias of CAT theta 

estimates. All of the nonsignificant ANOVA terms were associated with item selection 

methods, with trivially small effect sizes (all η
2
 < 0.001). Consistent with the findings from 

test length, the Fisher information-based and Kullback-Leibler divergence-based item 

selection methods are indistinguishable in their effectiveness with regard to systematic bias of 

the CAT latent trait estimates. 



Among the statistically significant main effects, stopping rule explained most of the 

variance in absolute bias, however this effect was quite modest (η
2
 = 0.067). Of the remaining 

significant main effects, the generated θ
*
 distribution, also produced a relatively small effect 

size (η
2
 = 0.003) as did the estimation methods (η

2
 = 0.001). The three significant interactions 

also explained a trivially small amount of model variance (each less than 0.1 %).  

Figures 21 and 22 graphically display the magnitude of individual bias as a function of 

CAT estimated theta for the uniform and standard normal true theta distributions, 

respectively. Given the ANOVA results, the item selection methods are not factored into the 

comparison in Figures 20 and 21. 

 

 

Figure 21 – Individual bias of CAT latent trait estimates (Y axis) as a function of CAT latent 

trait estimates (𝜃; X axis) for standard normal true latent trait (𝜃∗~ N(0,1)) distribution. Note: 

EAPn = EAP estimation with standard normal prior; EAPu = EAP estimation with uniform 

prior; error bars represent standard deviation 

 

The values of individual latent trait bias varied between approximately -0.7 and 0.7 

logits on average along the latent trait continuum, regardless of 𝜃∗ distribution, stopping rules, 

and latent trait estimation methods. However for latent trait estimates -2 < 𝜃< 2, the bias 



estimate ranged only from about -0.35 to 0.35 logits. This again highlights the questionable 

effectiveness of PSDQ CAT administration for assessing the extreme levels of physical self-

concept. 

 

 

Figure 22 – Individual bias of CAT latent trait estimates (Y axis) as a function of CAT latent 

trait estimates (𝜃; X axis) for uniform true latent trait (𝜃∗~ U(-3,3)) distribution. Note: EAPn 

= EAP estimation with standard normal prior; EAPu = EAP estimation with uniform prior; 

error bars represent standard deviation 

 

MLE and EAP estimation with uniform prior distribution produced very similar 

findings underscoring relatively small amounts of bias for the latent trait estimates along the 

latent trait continuum; and this was regardless of the specified test precision and 𝜃∗ 

distribution. Some small differences between the two estimation methods were observed at 

both positive and negative extremes of the 𝜃 scale, especially in case of the standard normal 

true theta distribution. This could be caused, however, by the fact that in standard normal 

distribution there are far less observations at both tails than around the mean, and thus the 

computed mean values of bias at both extremes of the latent trait might not converge to the 

true (population) parameters. EAP estimation with standard normal prior led to a considerably 



different pattern of the bias estimates than the other two latent trait estimation methods. At 

each SE stopping rule, EAP estimation with standard normal prior produced obvious inward 

bias, indicating the tendency of 𝜃 estimates to regress towards the prior mean.  

 

Correlations 

Table 6 shows the Pearson correlation coefficients between CAT estimated latent trait 

values (𝜃) and generated true latent trait values (𝜃∗) for various simulation conditions.  

When high measurement precision was desired (SE = 0.23) the correlations were 

indeed high, ranging from 0.973 to 0.990, regardless the estimation procedure, item selection 

method as well as true latent trait distribution. As expected, the correlations decrease with 

decreasing level of measurement precision, however even for stopping rule of SE = 0.45 the 

correlations were still relatively high (from 0.907 to 0.972). This results point to the potential 

usefulness of the PSDQ CAT administration, because it produces latent trait estimates very 

close to the true (hypothetical) latent values of the physical self-concept, while saving a 

considerable portion of the item pool (from about 50% at SE = 0.32 to more than 90% at SE = 

0.45 on average). 

 

Table 6 – Correlations between CAT latent trait estimates (𝜃) and true latent trait values (θ
*
) 

θ Item SE stopping rule for θ
*
 ~ N(0,1)   SE stopping rule for θ

*
 ~ U(-3,3) 

estimator selection 0.23 0.32 0.39 0.45   0.23 0.32 0.39 0.45 

MLE UW-FI 0.975 0.954 0.939 0.923 

 

0.990 0.983 0.975 0.967 

MLE FP-KL 0.974 0.957 0.936 0.920 

 

0.989 0.983 0.975 0.968 

EAPn UW-FI 0.974 0.950 0.927 0.907 

 

0.990 0.982 0.972 0.963 

EAPn FP-KL 0.974 0.953 0.927 0.912 

 

0.990 0.984 0.970 0.965 

EAPu UW-FI 0.976 0.956 0.939 0.926 

 

0.988 0.983 0.978 0.972 

EAPu FP-KL 0.973 0.955 0.939 0.920   0.988 0.982 0.977 0.970 

Note: EAPn = EAP estimation with standard normal prior distribution; EAPu = EAP estimation with 

uniform prior distribution 

 

The correlations between CAT estimated latent trait values (𝜃) and generated true 

latent trait values (𝜃∗) were higher for uniformly distributed 𝜃∗ at each level of measurement 

precision. This is most likely the consequence of higher average number of administered 

items in CAT simulations for uniformly distributed 𝜃∗. On the other hand, the two item 

selection methods employed in the simulations led to almost identical results also in terms of 

correspondence between 𝜃 and 𝜃∗. Likewise, using the different estimation procedures (MLE, 



EAP with normal prior distribution, and EAP with uniform prior distribution) did not produce 

any substantial differences in correlations between 𝜃 and 𝜃∗. 

Table 7 lists correlation between CAT latent trait estimates (𝜃) and estimates based on 

the full PSDQ (𝜃𝑃𝑆𝐷𝑄). These correlations assess the usefulness of PSDQ CAT administration 

as compared to the CTT approach of linear fixed-length testing. 

Also in this case the correlations decreased with increasing value of the standard error 

stopping rule. Uniformly distributed 𝜃∗ produced higher correlations than the normally 

distributed 𝜃∗, while only negligible differences were observed with regard to different 

estimation and item selection methods. Generally high values of the correlations in the Table 

7 (0.922 to 0.997) indicate, that even when administration of a considerable number of PSDQ 

items is curtailed using CAT, it is possible to obtain almost the same estimates of physical 

self-concept as when the whole questionnaire is used. 

 

Table 7 – Correlations between CAT latent trait estimates (𝜃) and full PSDQ latent trait 

estimates (𝜃𝑃𝑆𝐷𝑄). 

θ Item SE stopping rule for θ
*
 ~ N(0,1)   SE stopping rule for θ

*
 ~ U(-3,3) 

estimator selection 0.23 0.32 0.39 0.45   0.23 0.32 0.39 0.45 

MLE UW-FI 0.990 0.966 0.953 0.935 

 

0.997 0.991 0.984 0.975 

MLE FP-KL 0.990 0.970 0.951 0.936 

 

0.997 0.992 0.984 0.976 

EAPn UW-FI 0.987 0.964 0.941 0.922 

 

0.997 0.989 0.979 0.971 

EAPn FP-KL 0.988 0.967 0.942 0.929 

 

0.997 0.989 0.977 0.972 

EAPu UW-FI 0.991 0.973 0.953 0.939 

 

0.997 0.991 0.986 0.980 

EAPu FP-KL 0.990 0.970 0.955 0.935   0.997 0.991 0.985 0.978 

Note: EAPn = EAP estimation with standard normal prior distribution; EAPu = EAP estimation with 

uniform prior distribution 

 

DISCUSSION 

Computerized adaptive testing (CAT) represents a novel approach to test 

administration, and offers the unique possibility of vastly improving testing efficiency 

(Anastasi, 1976; van der Linden & Glas, 2010; Weiss, 1982). The use of CAT methodology is 

now a firm part of the landscape in both psychology and education, however, this approach is 

much less utilized in the field of Kinanthropology. Since many self-report assessments 

developed in psychology are now used in studies of physical education and athletic 

performance, it makes sense to determine the suitability of CAT methods in this area of 

inquiry (Gershon & Bergstorm, 2006). The practical applicability of CAT was evaluated 

using Monte-Carlo simulations of adaptive administration of the Physical Self-Description 



Questionnaire (PSDQ) – an instrument widely used to assess physical self-concept in the field 

of Kinanthropology. The Monte Carlo simulation study was designed to compare the number 

of administered items from PSDQ (test length) and accuracy of estimated latent levels of 

physical self-concept, while using a variety of latent trait estimation methods (MLE, EAP 

with standard normal prior, and EAP with uniform prior distribution), items selection 

algorithms (UW-FI, and FP-KL), distributional properties (standard normal and uniform 

distribution of the true latent trait values) and stopping rules (standard error of latent trait 

estimate SE = 0.23, SE = 0.32, SE = 0.39, and SE = 0.45). Each of these frequently discussed 

CAT settings represents important elements that should be considered in the application of 

CAT, both in general (Thompson & Weiss, 2011) and specifically within the measurement of 

physical self-concept as it can be used in Kinanthropology. 

The Monte Carlo simulation results showed that CAT can successfully be applied as a 

method of reducing test length when using the PSDQ to assess physical self-concept. For 

instance, CAT requiring widely acceptable measurement precision (SE = 0.45 which 

represents test reliability of 0.80) saved on average about 85% to 93% of administered items. 

Naturally, when increasing the required measurement precision, the average number of 

administered items increases. Notwithstanding, the CAT approach may be very useful in 

reducing response burden even for a relatively high benchmark of precision (SE = 0.23 which 

represents test reliability of 0.95), where on average implementation of this procedure can still 

result in a reduction of more than 50% of the items from the original questionnaire per 

respondent.  

Moreover this rather substantial reduction in examinee response burden was achieved 

without any serious loss of information about the trait in question for simulated respondents. 

For example, with the PSDQ in hand, and using a CAT stopping rule SE = 0.45 (requiring test 

reliability of 0.80 along the latent continuum), where only 4 to 10 items were administered on 

average, the correlations between CAT estimated latent trait values (𝜃) and generated true 

latent trait values (𝜃∗) exceeded 0.90. This clearly shows that individually tailored selection of 

items from the PSDQ provides an unbiased estimate of the underlying latent trait using a 

much shorter test. The correlations between CAT latent trait estimates (𝜃) and the physical 

self-concept estimates based on all of the items in the PSDQ (𝜃𝑃𝑆𝐷𝑄) were even higher. This 

latter finding reflects more about the usefulness of a CAT application compared to the fixed-

length linear testing. Others have noted that there are no clear cut-offs for expected correlation 

levels between CAT estimates and the full-length measure (Makransky, Dale, Havmose, & 



Bleses, 2016). However previous simulation studies using similar SE stopping rules as those 

employed in the current thesis reported correlations between 0.85 and 0.98 (e.g., Hula, 

Kellough, & Fergadiotis, 2015; Makransky, Mortensen, & Glas, 2013; Štochl et al., 2016b). 

The lowest correlations yielded by the current CAT simulation of the PSDQ were 0.922 and 

0.987 for standard error stopping rules SE = 0.45 and SE = 0.23 respectively. This relatively 

high magnitude of association indicates considerable time and perhaps costs savings when 

CAT is used to administer the PSDQ. In essence, a test developer is able to obtain a very good 

“read” on the underlying latent trait of physical self-concept using a reduced set of items, 

rather than resorting to the full 70 items. Thus, in line with results of many other CAT studies 

(Devine et al., 2016; Makransky et al., 2016; Petersen et al., 2016; Štochl et al., 2016a, 2016b; 

Tseng, 2016), we can conclude that a CAT methodology leads to improved test efficiency, 

economy, and precision. 

The same may not be true, however, when we discuss the expected benefits of CAT 

(i.e., reducing the respondent’s burden) when measuring high levels of the physical self-

concept. The lack of desired efficiency with high trait levels may be attributable to the 

original measurement properties of the PSDQ items, which provide more information for 

individuals with low physical self-concept (Flatcher & Hattie, 2004). Like the original fixed-

length instrument, a CAT PSDQ administration would therefore be far less precise in 

detecting high levels of physical self-concept. Therefore, if the primary purpose is to detect 

and discriminate between examinees with low to average levels of physical self-concept, a 

CAT version of the PSDQ seems sufficient. Some authors (Nogami & Hayashi, 2010; Smits, 

Cuijpers, & van Straten, 2011) have argued, however, that for common CAT applications, the 

item pool information function should ideally follow a uniform distribution. Thus, to take the 

advantage of the CAT approach when assessing high levels of physical self-concept requires 

extending the PSDQ item pool with new items that have very high threshold parameters and 

provide greater coverage of the latent trait (see Appendix). It should be noted, however, that 

this might not be an easy task in practice, since some authors reported problems in assessing 

high levels of physical self-concept and the problems appear to be inherent in the nature of the 

construct (Flatcher & Hattie, 2004).  

Several authors have noted that simulation studies are essential in order to compare 

and evaluate different CAT algorithm specifications (e.g. latent trait estimation methods, item 

selection methods, stopping rules) and to identify a suitable combination of the settings for a 

given CAT (e.g., Thompson & Weiss, 2011; van der Linden & Pashley, 2010). Not 

surprisingly, the results of the current simulation revealed that the efficacy of the PSDQ CAT 



administration in terms of test length is greatly influenced by the desired value of the SE 

stopping rule. There are many situations where screening instruments are needed, whether 

they involve clinical settings or where time limitations come into play, and where parsimony 

in the number of items administered is a concern. In these situations, imposition of the SE = 

0.45 stopping rule seems attractive. While CAT using this termination decision rule ensures 

the acceptable reliability (0.80) of the physical self-concept estimates along the whole latent 

continuum, on average only about 15% of items from the original PSDQ questionnaire is 

administered and imposition of this rule also yields very similar trait estimates as the 

traditional linear administration of the full PSDQ. However, when considering the question of 

which SE stopping rule would be optimal in a real PSDQ CAT administration, the appropriate 

value may vary as a result of the prioritization of parsimony versus accuracy in a given 

physical self-concept measurement (Makransky et al., 2016; Tseng, 2016).  

With respect to item selection, both Kullback-Leibler divergence-based and Fisher 

information-based methods led to almost identical test length and produced similar levels of 

bias for latent trait estimates. Veldkamp (2003) reported very similar performance of these 

two item selection methods in polytomous IRT-based CAT using the generalized partial credit 

model (GPCM). In his study, Veldkamp (2003) found a relatively large amount of overlap in 

administered items (85% to 100%) between Fisher-based and Kullback-Leibler-based item 

selection methods, while the difference in measurement precision was negligible. Similarly, a 

simulation study by (Passos, Berger, & Tan, 2007) identified comparable performance of the 

two item selection methods using a nominal IRT model. More recently, Štochl et al. (2016a, 

2016b) investigated the Kullback-Leibler divergence-based and Fisher information-based 

item selection methods in simulated CATs with real item pools designed to measure mental 

health in a community setting. These studies showed that the CAT item selection methods 

discussed here are practically indistinguishable in terms of CAT efficacy and accuracy. Thus 

in line with previous research it can be concluded that when assessing physical self-concept 

by the PSDQ adaptively, the more recently developed Kullback-Leibler divergence procedure 

may not deliver real benefits compared to the traditional item selection approach based on 

maximizing Fisher information [hypothesis a) was accepted].  

Since selecting an appropriate estimation method is crucial to CAT procedure, the 

current simulation compared three latent trait estimation methods: the maximum likelihood 

estimation (MLE), expected a posteriori trait estimation with uniform prior (EAP-u), and 

expected a posteriori trait estimation with standard normal prior distribution (EAP-n). 

Generally, all of these estimation methods produced a similar number of PSDQ administered 



items. Moreover, regardless of latent trait estimation method, the CAT estimates of physical 

self-concept (𝜃) correlated similarly with true latent trait values (𝜃∗) as well as with estimated 

latent trait values based on the full PSDQ (𝜃𝑃𝑆𝐷𝑄). Some differences were nevertheless 

observed at the higher extremes of the physical self-concept latent continuum (e.g. 𝜃 ≥ 2), 

where using EAP-n resulted in a reduced test length compared to the other latent trait 

estimation methods, especially when lower measurement precision was desired (e.g. stopping 

rule SE = 0.45). This reduction in a test length when estimating extreme levels of the latent 

trait however came at the cost of a slightly larger bias at both ends of the latent continuum as 

compared to the MLE and EAP-u. The ‘inward’ bias (reflecting regression to the prior mean) 

of the EAP-n method observed in the current simulation comports with many other studies 

evaluating the accuracy of latent trait estimation methods (Chang & Ying, 1999; van der 

Linden & Pashley, 2010; Wang & Wang, 2001, 2002; Weiss, 1982). Notably, and in contrast 

to findings reported by Chen, Hou, Fitzpatrick, and Dodd (1997) or Chen, Hou, and Dodd 

(1998), the bias functions for EAP-u, which were comparable to those produced by MLE, did 

not indicate substantial inward bias. This indicates that employing an informative prior 

distribution with Bayesian latent trait estimation methods (e.g. EAP) in PSDQ CAT can lead 

to a shorter test, but also it may reduce test accuracy at both extremes of the latent trait. 

Although such an observation may be of a theoretical interest, it would seem to have only 

negligible effect in a practical CAT administration of the PSQD [hypothesis b) was rejected; 

hypothesis d) was accepted]. Moreover it should also to be emphasized, that choosing an 

inappropriate informative prior may seriously distort the precision of the latent trait estimates 

(Boyd, Dodd, & Choi, 2010; Mislevy & Stocking, 1989; Seong, 1990) and may adversely 

affect the test length (Štochl et al., 2016b; van der Linden & Pashley, 2010). This fact was 

highlighted also in the current study, where EAP-n in combination with uniformly generated 

true latent trait values resulted in a slightly higher bias of the physical self-concept than any 

other combination of estimation method and true latent trait distribution (EAP-n with normal 

true latent trait distribution; EAP-u with normal true latent trait distribution; EAP-u with 

uniform true latent trait distribution). In conclusion, the present simulation underscores that 

MLE remains the recommended estimation method for practical applications of CAT with the 

PSDQ. 

When using CAT with Monte Carlo simulation a vector of true latent trait values 

needs to be specified by a researcher in order to obtain simulated responses to the test items. 

In the current study, two types of the hypothetical true latent physical self-concept 



distributions (standard normal vs. uniform) were compared with respect to the performance of 

the PSDQ CAT administration. Standard normal and uniform true latent trait distribution 

produced very similar bias of the physical self-concept CAT estimates. Employing generated 

true latent values of the physical self-concept with uniform distribution led to a higher number 

of administrated items [hypothesis c) was accepted], particularly for higher levels of 

measurement precision (e.g. stopping rules SE = 0.23 and SE = 0.32). Fortunately, a uniform 

distribution of physical self-concept is a very unlikely outcome when applied to an adolescent 

population, for which the PSDQ was developed (Marsh, 1996b; Marsh & Redmayne, 1994; 

Marsh et al., 1994). Therefore the average number of administered items in practical CAT 

applications for the PSDQ will likely be lower than indicated by the current results for 

uniformly distributed true latent trait values. In fact, the performance of CAT administration 

in a sample of youth drawn from the general population should resemble the results obtained 

using the standard normal true latent trait distribution – a more realistic distribution for 

physical self-concept in real-world conditions (Marsh, 1996a). 

Even with the tremendous opportunity provided through CAT administration of the 

PSDQ, the present study also has several limitations. First, the findings relied exclusively on 

Monte-Carlo simulation resulting in the potential for real versus simulated CAT 

administration to produce different findings (Smits et al., 2011). This is mainly because the 

generated responses during CAT Monte-Carlo simulations follow precisely the IRT model 

used for item calibration (Štochl et al., 2016b). However examinee’s real responses can vary 

considerably because of systematic or random error (Makransky et al., 2016). Fortunately, 

empirical examinations of these potential differences have shown little divergence in 

outcomes between real and simulated findings (Kocalevent et al., 2009). 

Related to the previous limitation, the present study did not take into account the 

model misfit within the item calibration. The PSDQ item parameters used for the simulation 

were obtained from a published paper (Flatcher & Hattie, 2004) and the parameters were 

considered as true parameters. Flatcher and Hattie (2004) however reported relatively high 

standard errors of some item parameter estimates leading to the supposition that the departure 

of estimates from true item parameters could undermine validity of the CAT procedure 

(Wainer & Mislevy, 2000). According to van der Linden and Pashley (2010), ignoring errors 

of the item parameters estimates in CAT is a “strategy without serious consequences as long 

as the calibration sample is large” (p. 13). The sample used by Flatcher and Hattie (2004) for 

the PSDQ item calibration was relatively modest in size (N = 868) suggesting that re-



calibration of the PSDQ items using larger samples may be required for future application of 

CAT when assessing physical self-concept. 

In addition to the concerns raised above, conceptual differences may exist between the 

PSDQ CAT administration and the traditional fixed-length linear PSDQ assessment. The 

PSDQ was initially developed using principles comporting with a CTT framework and 

intended to measure 11 different specific sub-domains of general physical self-concept 

(Marsh et al., 1994). The present CAT simulation however used item parameters, which were 

calibrated using a unidimensional GRM
1
 (Samejima, 1969). As a result, the model testing 

procedure assumed that adaptive administration of the PSDQ will adequately assess a single 

dimension of general physical self-concept. Although assessing a single dimension of general 

physical self-concept using the PSDQ may be legitimate for practical or research purposes 

(Flatcher & Hattie, 2004; Marsh, 1996a, 1996b; Marsh et al., 1994), some might argue that 

the general construct should tap all 11 proposed subdomains in order to represent the full 

nature of physical self-concept (Marsh & Redmayne, 1994; Shavelson et al., 1976). This 

might not be fulfilled when items within a CAT procedure are selected purely on the basis of 

statistical criteria – that is without applying content balancing methods. For example, it is 

very likely that using statistically motivated item selection procedures in PSDQ CAT 

administration (used in the current study), may lead to under-representation of the health 

subdomain items because these items provide relatively low amount of information along the 

latent continuum (Flatcher & Hattie, 2004). Future research should therefore explore whether 

application of content balancing methods using CAT with the PSDQ would be practically 

feasible and useful.  

Despite these limitations, the current study has shown that CAT represents “a 

sophisticated method of delivering examinations” (Thompson & Weiss, 2011, p. 1) and 

improves the efficiency of a testing procedure. Using an assessment instrument commonly 

used in the field of Kinanthropology, the present study shows that CAT has a great potential 

for the assessment of physical self-concept and that the PSDQ is very well suited for this 

approach. Given the favorable results of the present simulation study, an interesting next step 

would be to evaluate the usefulness of the PSDQ CAT administration in real testing 

conditions. Nevertheless the present findings provide very encouraging support for the use of 

CAT in Kinanthropology.  

                                                           
1
 Unfortunately the item-level data from the original calibration (Flatcher & Hattie, 2004) were not available 

while conducting the present simulation study. It was therefore impossible to verify whether the unidimensional 

model is indeed the most suitable underlying description of the examinees’ responses to the PSDQ items.  



CONCLUSIONS 

This thesis aimed to investigate the feasibility and usefulness of the adaptive 

administration of the Physical Self-Description Questionnaire while using a variety of item 

selection and latent trait estimation methods, distributional properties and test termination 

criteria. A Monte Carlo simulation study was designed to address the proposed aims. The 

main findings of the study can be briefly summarized as follows: 

- CAT can successfully be applied as a method of reducing test length when measuring 

physical self-concept using the PSDQ items. Using a much shorter test, CAT provides 

latent trait estimates which are unbiased and correspond highly with the estimates 

based on administration of the whole questionnaire. 

- More items with high positive threshold values should be incorporated into the PSDQ 

in order to improve the CAT efficiency when assessing the high levels of the physical 

self-concept. 

- CAT using Kullback-Leibler divergence-based (FP-KL) and Fisher information-based 

(UW-FI) item selection methods respectively, led to almost identical average number 

of administered items from the PSDQ and produced very similar bias of the latent trait 

estimates. Either item selection method can therefore be recommended in further 

PSDQ CAT administrations. 

- The maximum likelihood latent trait estimation (MLE), expected a posteriori 

estimation with uniform prior (EAP-u), and expected a posteriori estimation with 

standard normal prior distribution (EAP-n) were similarly effective with regard to the 

average number of administered items in PSDQ CAT. Some minor differences 

between these estimation methods were observed only at the higher end of the latent 

trait continuum, where EAP-n led to smaller average number of administered items 

but at the cost of higher bias of the latent trait estimates. Given the results of the 

present study the MLE may be recommended for future practical applications of CAT 

to assess physical self-concept. 
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APPENDIX 

 

Test information and corresponding standard error for the Physical Self-Description 

Questionnaire item pool 

 

 


